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Research Problem

Feasibility Fingerprint Collection

Video tratfic currently dominates global IP traffic, accounting for an estimated 70% of all traffic in 2015.
Dynamic Adaptive Streaming over HTTP (DASH) is one of the most popular video streaming techniques and
is used by some of the market’s biggest players (e.g. Netflix and Amazon). Previous work showed that DASH
with variable bitrate (VBR) is vulnerable to identification but left a few significant questions unanswered.
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4 laptops over 7 days (live tweeting)

1.37GB of storage space
42,027 unique videos

* 38,780 shows (92%)

* 3,247 movies (8%)
330,264 total fingerprints

* Average of 7.86 per video
20 seconds per video
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Question 1: Can we accurately identify DASH videos at scale?

The previous work was only able to identify one video at a time from a pre-defined set of 50 manually
cataloged videos. Netflix alone has a library of over 20,000 videos which changes monthly. Can we do this
identification in an automated fashion given any Netflix video and simultaneous users?

Sub-Question 1: Can we fingerprint and identify every single Netflix video?

Sub-Question 2: Can our identification algorithm handle ISP equivalent network traffic volume?
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Video SegmﬁfNumber Average length 38:54 s & 8 & § & 5 52 8 3§ & &
. . . « Average movie length 1:33:30 Average Bitrate of Fingerprint (in kbps)
Question 2: Can we do this identification with encrypted traffic? Figure 1: Netflix video overhead due to HTTP . Average flov leng%h i o N gb f fg.p 9 .
The previous work also only identified HTTP Netflix traffic. Netflix recently switched to using HTTPS to both headers and TLS (Home, 3830 kbps). 1gure . Number of Hingerprints by

average bitrate in 100 kbps bins.

authenticate and encrypt their video streams in order to improve their privacy. While this switch prevents
many previously disclosed deep-packet inspection video identification techniques, does this change prevent us
from using Application Data Unit (ADU) sizes to identify DASH videos?
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Cumulative Probability
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Conclusions

Netflix Users
Identification Appliance * Even with encryption, variable bitrate encoding still leaks details of the underlying content.
— . . — * Application Data Units provide an interesting vantage point to track data streams without doing packet level analysis.
Server connected . Adudump w/ Filter Traffic Identification I admini 1d 1v do thi f lvs: b minimal hard .
via Span Portin | — Timestamp o PO Dir| Netflix Server | Size (B) Script * An ISP or network administrator could easily do this type of analysis with minimal hardware requirements.
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